63 research outputs found

    3D scanners in orthodontics—Current knowledge and future perspectives—A systematic review

    Get PDF
    Background: Nowadays the use of intraoral scanners has become a routine practice in orthodontics. It allows the introduction of many treatment innovations. One should consider to what extent intraoral scanners have influenced the everyday orthodontic practice and in what direction should the further research in this field be conducted. This study is aimed to systematically review and synthesize available controlled trials investigating the accuracy and efficacy of intraoral scanners for orthodontic purpose to provide clinically useful information and to direct further research in this field. Methods: A literature search of free text and MeSH terms was performed by using MedLine (PubMed), Scopus, Web of Science and Embase. The search engines were used to find studies on application of intraoral scanners in orthodontics (from 1950 to 30 September 2020). The following keywords were used: “intraoral scanners AND efficiency AND accuracy AND orthodontics”. Results: The number of potential identified articles was 71, including 61 from PubMed, two from Scopus, three from Web of Science and five from Embase. After removal of duplicates, 67 full-text articles were analyzed for inclusion criteria, 16 of them were selected and finally included in the qualitative synthesis. Conclusions: There are plenty of data available on accuracy and efficacy of different scanners. Scanners of the same generation from different manufacturers have almost identical accuracy. This is the reason why future similar research will not introduce much to the orthodontics. The challenge for the coming years is to find new applications of digital impressions in the orthodontic practice

    Cell-specific response of NSIP- and IPF-derived fibroblasts to the modification of the elasticity, biological properties, and 3D architecture of the substrate

    Get PDF
    The fibrotic fibroblasts derived from idiopathic pulmonary fibrosis (IPF) and nonspecific interstitial pneumonia (NSIP) are surrounded by specific environments, characterized by increased stiffness, aberrant extracellular matrix (ECM) composition, and altered lung architecture. The presented research was aimed at investigating the effect of biological, physical, and topographical modification of the substrate on the properties of IPF- and NSIP-derived fibroblasts, and searching for the parameters enabling their identification. Soft and stiff polydimethylsiloxane (PDMS) was chosen for the basic substrates, the properties of which were subsequently tuned. To obtain the biological modification of the substrates, they were covered with ECM proteins, laminin, fibronectin, and collagen. The substrates that mimicked the 3D structure of the lungs were prepared using two approaches, resulting in porous structures that resemble natural lung architecture and honeycomb patterns, typical of IPF tissue. The growth of cells on soft and stiff PDMS covered with proteins, traced using fluorescence microscopy, confirmed an altered behavior of healthy and IPF- and NSIP-derived fibroblasts in response to the modified substrate properties, enabling their identification. In turn, differences in the mechanical properties of healthy and fibrotic fibroblasts, determined using atomic force microscopy working in force spectroscopy mode, as well as their growth on 3D-patterned substrates were not sufficient to discriminate between cell lines

    Attachments for the orthodontic aligner treatment—State of the art—A comprehensive systematic review

    Get PDF
    Background: In recent years the burden of aligner treatment has been growing. However, the sole use of aligners is characterized by limitations; thus attachments are bonded to the teeth to improve aligner retention and tooth movement. Nevertheless, it is often still a challenge to clinically achieve the planned movement. Thus, the aim of this study is to discuss the evidence of the shape, placement and bonding of composite attachments. Methods: A query was carried out in six databases on 10 December 2022 using the search string (“orthodontics” OR “malocclusion” OR “Tooth movement techniques AND (“aligner*” OR “thermoformed splints” OR “invisible splint*” AND (“attachment*” OR “accessor*” OR “auxill*” AND “position*”). Results: There were 209 potential articles identified. Finally, twenty-six articles were included. Four referred to attachment bonding, and twenty-two comprised the influence of composite attachment on movement efficacy. Quality assessment tools were used according to the study type. Conclusions: The use of attachments significantly improves the expression of orthodontic movement and aligner retention. It is possible to indicate sites on the teeth where attachments have a better effect on tooth movement and to assess which attachments facilitate movement. The research received no external funding. The PROSPERO database number is CRD42022383276

    Rodzice–szkoƂa i szkoƂa–rodzice: wzajemne oczekiwania

    Get PDF
    ArtykuƂ z numeru 1/2012 internetowego czasopisma edukacyjnego ORE "Trendy

    Changes in MicroRNA Expression during Rabbit Hemorrhagic Disease Virus (RHDV) Infection.

    Get PDF
    Current knowledge on the role of microRNAs (miRNAs) in rabbit hemorrhagic disease virus (RHDV) infection and the pathogenesis of rabbit hemorrhagic disease (RHD) is still limited. RHDV replicates in the liver, causing hepatic necrosis and liver failure. MiRNAs are a class of short RNA molecules, and their expression profiles vary over the course of diseases, both in the tissue environment and in the bloodstream. This paper evaluates the expression of miRNAs in the liver tissue (ocu-miR-122-5p, ocu-miR-155-5p, and ocu-miR-16b-5p) and serum (ocu-miR-122-5p) of rabbits experimentally infected with RHDV. The expression levels of ocu-miR-122-5p, ocu-miR-155-5p, and ocu-miR-16b-5p in liver tissue were determined using reverse transcription quantitative real-time PCR (RT-qPCR), and the expression level of circulating ocu-miR-122-5p was established using droplet digital PCR (ddPCR). The expression levels of ocu-miR-155-5p and ocu-miR-16b-5p were significantly higher in the infected rabbits compared to the healthy rabbits (a fold-change of 5.8 and 2.5, respectively). The expression of ocu-miR-122-5p was not significantly diïżœerent in the liver tissue from the infected rabbits compared to the healthy rabbits (p = 0.990), while the absolute expression level of the circulating ocu-miR-122-5p was significantly higher in the infected rabbits than in the healthy rabbits (p < 0.0001). Furthermore, a functional analysis showed that ocu-miR-155-5p, ocu-miR-16b-5p, and ocu-miR-122-5p can regulate the expression of genes involved in processes correlated with acute liver failure (ALF) in rabbits. Search tool for the retrieval of interacting genes/proteins (STRING) analysis showed that the potential target genes of the three selected miRNAs may interact with each other in diïżœerent pathways. The results indicate the roles of these miRNAs in RHDV infection and over the course of RHD and may reflect hepatic inflammation and impairment/dysfunction in RHD

    Long-term effectiveness of treating dentin hypersensitivity with bifluorid 10 and futurabond U: a split-mouth randomized double-blind clinical trial

    Get PDF
    Background: The definition of dental hypersensitivity is “pain derived from exposed dentin in response to chemical, thermal tactile or osmotic stimuli which cannot be explained as arising from any other dental defect or disease”. One of the treatments proposed is tubular occlusion. The aim of this in vivo split-mouth randomized clinical trial was to evaluate the clinical efficacy of a in-office application of a fluoride varnish (Bifluorid 10) and a bonding resin (Futurabond U) in adults with dentin hypersensitivity. Material and methods: A total of 180 teeth were treated with Bifluorid 10 and 160 with Futurabond U. Outcome measurements were taken one or two weeks before treatment, at baseline at the application days, at 1 week and at 1–6 months after first treatment. Results: Both treatments reduced pain intensity. Bifluorid 10 and Futurabond U have similar efficacy in reducing SCHIFF-measured pain reduction, while Bifluorid 10 is significantly more efficient for VAS-measured pain reduction, mainly due to long-term pain reduction. Patient age has a significant negative influence on pain reduction, while the influence of patient gender and BEWE of the tooth is insignificant. Conclusions: Bifluorid 10 and Futurabond U are effective in the treatment of dental hypersensitivity. The RCT was registered at the US National Institutes of Health (ClinicalTrials.gov) #NCT04813848

    Temperature- and pH-responsive schizophrenic copolymer brush coatings with enhanced temperature response in pure water

    Get PDF
    Novel brush coatings were fabricated with glass surface-grafted chains copolymerized using surface-initiated atom transfer radical polymerization (SI-ATRP) from 2-(2-methoxyethoxy)ethyl methacrylate (OEGMA188) and acrylamide (AAm), taken in different proportions. P(OEGMA188-co-AAm) brushes with AAm mole fraction >44% (determined with XPS and TOF-SIMS spectroscopy) and nearly constant with the depth copolymer composition (TOF-SIMS profiling) exhibit unusual temperature-induced transformations: The contact angle of water droplets on P(OEGMA188-co-AAm) coatings increases by ~45° with temperature, compared to 17−18° for POEGMA188 and PAAm. The thickness of coatings immersed in water and the morphology of coatings imaged in air show a temperature response for POEGMA188 (using reflectance spectroscopy and AFM, respectively), but this response is weak for P(OEGMA188-co-AAm) and absent for PAAm. This suggests mechanisms more complex than a simple transition between hydrated loose coils and hydrophobic collapsed chains. For POEGMA188, the hydrogen bonds between the ether oxygens of poly(ethylene glycol) and water hydrogens are formed below the transition temperature Tc_{c} and disrupted above Tc_{c} when polymer−polymer interactions are favored. Different hydrogen bond structures of PAAm include free amide groups, cis-trans-multimers, and trans-multimers of amide groups. Here, hydrogen bonds between free amide groups and water dominate at T Tc_{c}, such as cis-trans-multimers and trans-multimers of amide groups, can still be hydrated. The enhanced temperature-dependent response of wettability for P(OEGMA188-co-AAm) with a high mole fraction of AAm suggests the formation at Tc_{c} of more hydrophobic structures, realized by hydrogen bonding between the ether oxygens of OEGMA188 and the amide fragments of AAm, where water molecules are caged. Furthermore, P(OEGMA188-co-AAm) coatings immersed in pH buffer solutions exhibit a 'schizophrenic' behavior in wettability, with transitions that mimic LCST and UCST for pH = 3, LCST for pH = 5 and 7, and any transition blocked for pH = 9

    Assessing Various Control Samples for Microarray Gene Expression Profiling of Laryngeal Squamous Cell Carcinoma

    Get PDF
    Selection of optimal control samples is crucial in expression profiling tumor samples. To address this issue, we performed microarray expression profiling of control samples routinely used in head and neck squamous cell carcinoma studies: human bronchial and tracheal epithelial cells, squamous cells obtained by laser uvulopalatoplasty and tumor surgical margins. We compared the results using multidimensional scaling and hierarchical clustering versus tumor samples and laryngeal squamous cell carcinoma cell lines. A general observation from our study is that the analyzed cohorts separated according to two dominant factors: "malignancy", which separated controls from malignant samples and "cell culture-microenvironment" which reflected the differences between cultured and non-cultured samples. In conclusion, we advocate the use of cultured epithelial cells as controls for gene expression profiling of cancer cell lines. In contrast, comparisons of gene expression profiles of cancer cell lines versus surgical margin controls should be treated with caution, whereas fresh frozen surgical margins seem to be appropriate for gene expression profiling of tumor samples.</p

    Enamel Analysis by 3D Scanning after Three Orthodontic Clean-Up Procedures: An In-Vitro Test of a New Piezoelectric Tool

    Get PDF
    (1) Background: To assess the clinical safety and efficacy of a new piezoelectric instrument for orthodontic clean-up; (2) Methods: An in-vitro comparative study on 75 teeth extracted for orthodontic reasons compared the tested method (Treatment 1) with two other procedures: One step finisher and polisher (Inverted cone One gloss Shofu Dental, Kyoto, Japan) (Treatment 2) and twelvefluted tungsten carbide bur (123-603-00, Dentaurum, Pforzheim, Germany) and Sof-Lex discs Pop-On XT Kit (3M ESPE) (Treatment 3), with n:25 samples in each group. Clinical safety (enamel volume loss) and effectiveness (residual adhesive volume) were assessed using the structured light 3D scanner Atos Compact Scan (GOM GmbH) together with the support of Atos Professional software. The surfaces were scanned three times to assess: (i) the volume of the residual adhesive (RAV) after bracket removal; (ii) the volume of the relative residual adhesive (dAV) after the clean-up procedure; (iii) volume of the enamel loss (EVL); (3) Results: The mean RAV (mm3) was 0.239 ± 0.337; 0.069 ± 0.124, 0.120 ± 0.193 and the mean EVL (mm3) was 0.1870 ± 0.177, 0.187 ± 0.299 and 0.290 ± 0.205, for treatment 1, 2 and 3, respectively. The distribution was asymmetrical between groups in both cases; (4) Conclusions: The tested instrument proved to be effective and safe for post-orthodontic clean-up. With the increasing use of invisible aligners, the possibility of using an ergonomic and fast instrument is of benefit to both patient and practitioner
    • 

    corecore